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British Mathematical Olympiad

Round 2 : Tuesday, 1 February 2005

Time allowed Three and a half hours.

Each question is worth 10 marks.

Instructions • Full written solutions - not just answers - are
required, with complete proofs of any assertions
you may make. Marks awarded will depend on the
clarity of your mathematical presentation. Work
in rough first, and then draft your final version
carefully before writing up your best attempt.

Rough work should be handed in, but should be
clearly marked.

• One or two complete solutions will gain far more
credit than partial attempts at all four problems.

• The use of rulers and compasses is allowed, but
calculators and protractors are forbidden.

• Staple all the pages neatly together in the top left
hand corner, with questions 1,2,3,4 in order, and
the cover sheet at the front.

In early March, twenty students will be invited
to attend the training session to be held at
Trinity College, Cambridge (7-11 April). On the
final morning of the training session, students sit a
paper with just 3 Olympiad-style problems, and
8 students will be selected for further training.
Those selected will be expected to participate
in correspondence work and to attend further
training. The UK Team of 6 for this summer’s
International Mathematical Olympiad (to be held
in Merida, Mexico, 8 - 19 July) will then be chosen.

Do not turn over until told to do so.
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1. The integer N is positive. There are exactly 2005 ordered pairs (x, y)
of positive integers satisfying
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Prove that N is a perfect square.

2. In triangle ABC, 6 BAC = 120◦. Let the angle bisectors of angles
A,B and C meet the opposite sides in D,E and F respectively.

Prove that the circle on diameter EF passes through D.

3. Let a, b, c be positive real numbers. Prove that
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4. Let X = {A1, A2, . . . , An} be a set of distinct 3-element subsets of
{1, 2, . . . , 36} such that

i) Ai and Aj have non-empty intersection for every i, j.

ii) The intersection of all the elements of X is the empty set.

Show that n ≤ 100. How many such sets X are there when n = 100?


